If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t+27=0
a = -16; b = 96; c = +27;
Δ = b2-4ac
Δ = 962-4·(-16)·27
Δ = 10944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10944}=\sqrt{576*19}=\sqrt{576}*\sqrt{19}=24\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-24\sqrt{19}}{2*-16}=\frac{-96-24\sqrt{19}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+24\sqrt{19}}{2*-16}=\frac{-96+24\sqrt{19}}{-32} $
| -5=v/6.2 | | -24x13=0 | | -(-24x13=0 | | -8=4/3(9x-12) | | 0=-16t^2+96t+27 | | -t/4=−3π | | 2x-7+2x-13=180 | | 2x-7=+2x-13=180 | | 8x^2+5=3x^2+130 | | -2r+9=-11 | | -72x1+2=0 | | x+5x=8x-2x | | 7+10a=-83 | | -30=3(5-2x)+9 | | -65/144=-5/8r | | -8x(-1=0 | | 6x+5/2x-1=2/3 | | 14x-(9x-7)=62 | | 2x+4=18- | | 18=n÷13 | | 1/2(-8x-10)=4 | | 63-2y=35 | | -4(x+3)=3(x-4) | | -32/57=2/3n | | -2(-4+7)=7(x-4) | | 5x-28-7x+4=180 | | 2x²+18=180 | | 5x+28+7x+4=180 | | 1/3y-6=-13 | | 3x-5x=25-2x | | 3+5x=475 | | 2x-13=2x+18 |